

 Navigation

 	
 index

 	
 modules |

 	
 next |

 	signalslot 0.1.1 documentation

 [image: https://secure.travis-ci.org/Numergy/signalslot.png?branch=master]
 [http://travis-ci.org/Numergy/signalslot][image: https://pypip.in/d/signalslot/badge.png]
 [https://crate.io/packages/signalslot][image: https://pypip.in/v/signalslot/badge.png]
 [https://crate.io/packages/signalslot][image: https://coveralls.io/repos/Numergy/signalslot/badge.png]
 [https://coveralls.io/r/Numergy/signalslot][image: https://readthedocs.org/projects/signalslot/badge/?version=latest]
 [https://signalslot.readthedocs.org/en/latest]
signalslot: simple Signal/Slot implementation for Python

This package provides a simple and stupid implementation of the Signal/Slot
pattern [http://en.wikipedia.org/wiki/Signals_and_slots] for Python.
Wikipedia has a nice introduction:

Signals and slots is a language construct introduced in Qt for
communication between objects[1] which makes it easy to implement the
Observer pattern while avoiding boilerplate code.

Rationale against Signal/Slot is detailed in the “Pattern”
section of the documentation.

Install

Install latest stable version:

pip install signalslot

Install development version:

pip install -e git+https://github.com/Numergy/signalslot

Upgrade

Upgrade to the last stable version:

pip install -U signalslot

Uninstall

pip uninstall signalslot

	Signal/Slot design pattern
	Introduction

	Tight coupling

	Observer pattern

	With Signal/Slot

	Usage
	signalslot.Signal objects

Indices and tables

	Index

	Module Index

	Search Page

 Copyright 2014, Numergy.
 Created using Sphinx 1.3.4.

 Navigation

 	
 index

 	
 modules |

 	
 next |

 	
 previous |

 	signalslot 0.1.1 documentation

Signal/Slot design pattern

Introduction

Signal/Slot is a pattern that allows loose coupling various components of a
software without having to introduce boilerplate code. Loose coupling of
components allows better modularity in software code which has the nice side
effect of making it easier to test because less dependencies means less mocking
and monkey patching.

Signal/Slot is a widely used pattern, many frameworks have it built-in
including Django, Qt and probably many others. If you have a standalone project
then you probably don’t want to add a big dependency like PyQt or Django just
for a Signal/Slot framework. There are a couple of standalone libraries which
allow to acheive a similar result, like Circuits or PyPubSub, which has way
more features than signalslots, like messaging over the network and is a
quite complicated and has weird (non-PyPi hosted) dependencies and is not PEP8
compliant ...

signalslot has the vocation of being a light and simple implementation of
the well known Signal/Slot design pattern provided as a classic quality Python
package.

Tight coupling

Consider such a code in your_client.py:

import your_service
import your_dirty_hack # WTH is that doing here ? huh ?

class YourClient(object):
 def something_happens(self, some_argument):
 your_service.something_happens(some_argument)
 your_dirty_hack.something_happens(some_argument)

The problem with that code is that it ties your_client with
your_service and your_dirty_hack which you really didn’t want to put
there, but had to, “until you find a better place for it”.

Tight coupling makes code harder to test because it takes more mocking and
harder to maintain because it has more dependencies.

An improvement would be to acheive the same while keeping components loosely
coupled.

Observer pattern

You could implement an Observer pattern in YourClient by adding
boilerplate code:

class YourClient(object):
 def __init__(self):
 self.observers = []

 def register_observer(self, observer):
 self.observers.append(observer)

 def something_happens(self, some_argument):
 for observer in self.observers:
 observer.something_happens(some_argument)

This implementation is a bit dumb, it doesn’t check the compatibility of
observers for example, also it’s additionnal code you’d have to test, and it’s
“boilerplate”.

This would work if you have control on instanciation of YourClient, ie.:

your_client = YourClient()
your_client.register_observer(your_service)
your_client.register_observer(your_dirty_hack)

If YourClient is used by a framework with IoC [http://en.wikipedia.org/wiki/Inversion_of_control] then it might become
harder:

service = some_framework.Service.create(
 client='your_client.YourClient')

service._client.register_observer(your_service)
service._client.register_observer(your_dirty_hack)

In this example, we’re accessing a private python variable _client and
that’s never very good because it’s not safe against forward compatibility.

With Signal/Slot

Using the Signal/Slot pattern, the same result could be achieved with total
component decoupling. It would organise as such:

	YourClient defines a something_happens signal,

	your_service connects its own callback to the something_happens,

	so does your_dirty_hack,

	YourClient.something_happens() “emits” a signal, which in turn calls all
connected callbacks.

Note that a connected callback is called a “slot” in the “Signal/Slot” pattern.

See Usage for example code.

 Copyright 2014, Numergy.
 Created using Sphinx 1.3.4.

 Navigation

 	
 index

 	
 modules |

 	
 previous |

 	signalslot 0.1.1 documentation

Usage

signalslot.Signal objects

Module defining the Signal class.

	
class signalslot.signal.BaseSlot[source]

	Slot abstract class for type resolution purposes.

	
class signalslot.signal.DummyLock[source]

	Class that implements a no-op instead of a re-entrant lock.

	
class signalslot.signal.Signal(args=None, name=None, threadsafe=False)[source]

	Define a signal by instanciating a Signal object, ie.:

>>> conf_pre_load = Signal()

Optionaly, you can declare a list of argument names for this signal, ie.:

>>> conf_pre_load = Signal(args=['conf'])

Any callable can be connected to a Signal, it must accept keywords
(**kwargs), ie.:

>>> def yourmodule_conf(conf, **kwargs):
... conf['yourmodule_option'] = 'foo'
...

Connect your function to the signal using connect():

>>> conf_pre_load.connect(yourmodule_conf)

Emit the signal to call all connected callbacks using
emit():

>>> conf = {}
>>> conf_pre_load.emit(conf=conf)
>>> conf
{'yourmodule_option': 'foo'}

Note that you may disconnect a callback from a signal if it is already
connected:

>>> conf_pre_load.is_connected(yourmodule_conf)
True
>>> conf_pre_load.disconnect(yourmodule_conf)
>>> conf_pre_load.is_connected(yourmodule_conf)
False

	
connect(slot)[source]

	Connect a callback slot to this signal.

	
disconnect(slot)[source]

	Disconnect a slot from a signal if it is connected else do nothing.

	
emit(**kwargs)[source]

	Emit this signal which will execute every connected callback slot,
passing keyword arguments.

If a slot returns anything other than None, then emit() will
return that value preventing any other slot from being called.

>>> need_something = Signal()
>>> def get_something(**kwargs):
... return 'got something'
...
>>> def make_something(**kwargs):
... print('I will not be called')
...
>>> need_something.connect(get_something)
>>> need_something.connect(make_something)
>>> need_something.emit()
'got something'

	
is_connected(slot)[source]

	Check if a callback slot is connected to this signal.

	
slots

	Return a list of slots for this signal.

 Copyright 2014, Numergy.
 Created using Sphinx 1.3.4.

 Navigation

 	
 index

 	
 modules |

 	signalslot 0.1.1 documentation

 Python Module Index

 s

 			

 		
 s	

 	[image: -]
 	
 signalslot	

 	
 	
 signalslot.signal	

 Copyright 2014, Numergy.
 Created using Sphinx 1.3.4.

 Navigation

 	
 index

 	
 modules |

 	signalslot 0.1.1 documentation

Index

 B
 | C
 | D
 | E
 | I
 | S

B

 	

 	BaseSlot (class in signalslot.signal)

C

 	

 	connect() (signalslot.signal.Signal method)

D

 	

 	disconnect() (signalslot.signal.Signal method)

 	

 	DummyLock (class in signalslot.signal)

E

 	

 	emit() (signalslot.signal.Signal method)

I

 	

 	is_connected() (signalslot.signal.Signal method)

S

 	

 	Signal (class in signalslot.signal)

 	signalslot.signal (module)

 	

 	slots (signalslot.signal.Signal attribute)

 Copyright 2014, Numergy.
 Created using Sphinx 1.3.4.

 search.html

 Navigation

 		
 index

 		
 modules |

 		signalslot 0.1.1 documentation »

 Search

 Please activate JavaScript to enable the search
 functionality.

 From here you can search these documents. Enter your search
 words into the box below and click "search". Note that the search
 function will automatically search for all of the words. Pages
 containing fewer words won't appear in the result list.

 © Copyright 2014, Numergy.
 Created using Sphinx 1.3.4.

_modules/index.html

 Navigation

 		
 index

 		
 modules |

 		signalslot 0.1.1 documentation »

 All modules for which code is available

		signalslot.signal

 © Copyright 2014, Numergy.
 Created using Sphinx 1.3.4.

_static/plus.png

_static/comment-close.png

_modules/signalslot/signal.html

 Navigation

 		
 index

 		
 modules |

 		signalslot 0.1.1 documentation »

 		Module code »

 Source code for signalslot.signal

"""
Module defining the Signal class.
"""

import inspect
import threading

from . import exceptions

[docs]class DummyLock(object):
 """
 Class that implements a no-op instead of a re-entrant lock.
 """

 def __enter__(self):
 pass

 def __exit__(self, exc_type=None, exc_value=None, traceback=None):
 pass

[docs]class BaseSlot(object):
 """
 Slot abstract class for type resolution purposes.
 """
 pass

[docs]class Signal(object):
 """
 Define a signal by instanciating a :py:class:`Signal` object, ie.:

 >>> conf_pre_load = Signal()

 Optionaly, you can declare a list of argument names for this signal, ie.:

 >>> conf_pre_load = Signal(args=['conf'])

 Any callable can be connected to a Signal, it **must** accept keywords
 (``**kwargs``), ie.:

 >>> def yourmodule_conf(conf, **kwargs):
 ... conf['yourmodule_option'] = 'foo'
 ...

 Connect your function to the signal using :py:meth:`connect`:

 >>> conf_pre_load.connect(yourmodule_conf)

 Emit the signal to call all connected callbacks using
 :py:meth:`emit`:

 >>> conf = {}
 >>> conf_pre_load.emit(conf=conf)
 >>> conf
 {'yourmodule_option': 'foo'}

 Note that you may disconnect a callback from a signal if it is already
 connected:

 >>> conf_pre_load.is_connected(yourmodule_conf)
 True
 >>> conf_pre_load.disconnect(yourmodule_conf)
 >>> conf_pre_load.is_connected(yourmodule_conf)
 False
 """
 def __init__(self, args=None, name=None, threadsafe=False):
 self._slots = []
 self._slots_lk = threading.RLock() if threadsafe else DummyLock()
 self.args = args or []
 self.name = name

 @property
 def slots(self):
 """
 Return a list of slots for this signal.
 """
 with self._slots_lk:
 # Do a slot clean-up
 slots = []
 for s in self._slots:
 if isinstance(s, BaseSlot) and (not s.is_alive):
 continue
 slots.append(s)
 self._slots = slots
 return list(slots)

[docs] def connect(self, slot):
 """
 Connect a callback ``slot`` to this signal.
 """
 if not isinstance(slot, BaseSlot) and \
 inspect.getargspec(slot).keywords is None:
 raise exceptions.SlotMustAcceptKeywords(self, slot)

 with self._slots_lk:
 if not self.is_connected(slot):
 self._slots.append(slot)

[docs] def is_connected(self, slot):
 """
 Check if a callback ``slot`` is connected to this signal.
 """
 with self._slots_lk:
 return slot in self._slots

[docs] def disconnect(self, slot):
 """
 Disconnect a slot from a signal if it is connected else do nothing.
 """
 with self._slots_lk:
 if self.is_connected(slot):
 self._slots.pop(self._slots.index(slot))

[docs] def emit(self, **kwargs):
 """
 Emit this signal which will execute every connected callback ``slot``,
 passing keyword arguments.

 If a slot returns anything other than None, then :py:meth:`emit` will
 return that value preventing any other slot from being called.

 >>> need_something = Signal()
 >>> def get_something(**kwargs):
 ... return 'got something'
 ...
 >>> def make_something(**kwargs):
 ... print('I will not be called')
 ...
 >>> need_something.connect(get_something)
 >>> need_something.connect(make_something)
 >>> need_something.emit()
 'got something'
 """
 for slot in self.slots:
 result = slot(**kwargs)

 if result is not None:
 return result

 def __eq__(self, other):
 """
 Return True if other has the same slots connected.

 >>> a = Signal()
 >>> b = Signal()
 >>> a == b
 True
 >>> def slot(**kwargs):
 ... pass
 ...
 >>> a.connect(slot)
 >>> a == b
 False
 >>> b.connect(slot)
 >>> a == b
 True
 """
 return self.slots == other.slots

 def __repr__(self):
 return '<signalslot.Signal: %s>' % (self.name or 'NO_NAME')

 © Copyright 2014, Numergy.
 Created using Sphinx 1.3.4.

_static/comment.png

_static/minus.png

_static/up-pressed.png

_static/file.png

_static/comment-bright.png

_static/down-pressed.png

_static/ajax-loader.gif

_static/up.png

_static/down.png

